!. Write your NAME :	Exam 1 March 7, 2016	MEE 241 (Spring 2016)

Problem 1 (30 pts)

Fig. 1

Fig. 2

Fig. 3

The mechanism in Fig. 1 is rotating about the vertical axis with a constant angular velocity ω. If rod $A B$ is smooth, determine the value of ω that will keep the $3-\mathrm{kg}$ collar C at a constant position 800 mm away from the axis of rotation. The spring has an unstretched length of 400 mm .

Problem 2 (30 pts)
At the instant shown in Fig. 2, cars A and B are traveling at the speeds shown. If B is accelerating at $1200 \mathrm{~km} /$ h^{2} while A maintains a constant speed, determine the velocity and acceleration of A with respect to B.

Problem 3 (20 pts)

A 1200-kg car enters a section of curved road in the horizontal plane and speeds up at a uniform rate from a speed of $40 \mathrm{~km} / \mathrm{h}$ at A to a speed of $90 \mathrm{~km} / \mathrm{h}$ as it passes C. Determine the total horizontal force exerted by the road on the tires at position C where the radius of curvature of the road is 80 m .

Problem 4 (20 pts)

The weight of a particle varies with altitude such that $W=m g r_{e}^{2} / y^{2}$, where r_{e} is the radius of the earth and y is the distance from the particle to the earth's center. A particle is fired vertically upwards from the earth's surface with a velocity v_{0} :
a) determine its velocity as a function of position y
b) find the maximum y reached.
c) (bonus, 5 pts) What v_{0} will allow the particle to escape the earth's gravitational field and keep going towards outer space?

